
5
The Algebra of Linear
Regression and Partial

Correlation
Our goal in this book is to study structural equation modeling in its full
generality. However, much of our work will concentrate on ”Linear Structural
Relations Models,” which might be described succinctly as multiple linear
regression models with (possibly) latent independent and dependent variables.
Just as structural equation modeling contains a linear regression model within
its boundaries, so does factor analysis. Understanding the foundations of
both factor analysis and structural equation modeling therefore requires an
understanding of the key algebraic properties of linear regression. In this
chapter, we begin by recalling the basic results in bivariate linear regression.
We then proceed to multiple linear regression systems.

5.1 BIVARIATE LINEAR REGRESSION

In bivariate linear regression performed on a sample of N observations, we
seek to examine the extent of the linear relationship between two observed
variables, X and Y . One variable (usually the one labeled Y ) is the dependent
or criterion variable, the other (usually labeled X) is the independent or
predictor variable. Each data point represents a pair of scores, xi, yi that
may be plotted as a point in the plane. Such a plot, called a scatterplot, is
shown in Figure 5.1. Then, a straight line is fitted to the data.

It would be a rare event, indeed, if all the points fell on a straight line.
However, if Y and X have an approximate linear relationship, then a straight
line, properly placed, should fall close to many of the points.
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Fig. 5.1 A Scatterplot and Linear Regression Line

How does one decide when the line is positioned optimally? Generally,
the least squares criterion is employed. Recall the basic notation of linear
regression. The ith data point has coordinates (xi, yi) in the plane. Any
“regression line” is fully specified by its slope b and Y -intercept c, i.e., it fits
the equation Y = bX + c.

Figure 5.2 shows a single point in relation to a line in the plane. Suppose
one were trying to use the regression line to “predict” (or guess) the Y value
for this particular point from its X value, simply using the regression line. To
do this, one would evaluate the straight line function at the X value, by going
up to the line at xi. Typical notation is to call the predicted Y value ŷi. It

Fig. 5.2 Linear Regression Notation
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ŷi

yi

ei



BIVARIATE LINEAR REGRESSION 89

follows immediately that
ŷi = bxi + c (5.1)

and
yi = ŷi + ei (5.2)

where ei is defined tautologically as simply the (signed) distance in the up-
down direction between the point and the line, i.e.,

ei = yi − ŷi (5.3)

The least squares criterion chooses the best-fitting straight line by mini-
mizing the sum of squared errors, i.e.,

∑N
i=1 e2

i . Since, for any fixed set of data
points, the sum of squared errors is a function of the placement of the straight
line, it may be viewed as a function in two unknowns, b and c. Minimizing a
function of two unknowns is a straightforward exercise in differential calculus.
The result is well known, i.e., for the best-fitting straight line, the slope b and
Y -intercept c are

b = ryx
Sy

Sx
(5.4)

and
c = y• − bx• (5.5)

Note that, if Y and X are expressed in Z-score form, then b = ryx and
c = 0. Also note that, by substituting SyxSySx for ryx in Equation 5.4, one
obtains an alternative expression for b, i.e.,

b =
Syx

S2
x

(5.6)

If Y and X are expressed in deviation score form, the result of Equation 5.6
still holds, while c = 0.

Using linear transformation rules, one may derive expressions for the vari-
ance of the predicted (ŷi) scores, the error (ei) scores, and the covariance
between them. For example consider the variance of the predicted scores. Re-
member that adding a constant has no effect on a variance, and multiplying
by a constant multiplies the variance by the square of the multiplier. So, since
ŷi = bxi + c, it follows immediately that

s2
ŷ = b2S2

x

= (ryxSy/Sx)2S2
x

= r2
yxS2

y (5.7)

The covariance between the criterion scores (yi) and predicted scores (ŷi) is
obtained by the heuristic rule. Begin by re-expressing ŷi as bxi +c, then recall
that additive constant c cannot affect a covariance. So the covariance between
yi and ŷi is the same as the covariance between yi and bxi. Using the heuristic
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approach, we find that Sy,ŷ = Sy,bx = bSyx Recalling that Syx = ryxSySx,
and b = ryxSy/Sx, one immediately arrives at

Sy,ŷ = r2
yxS2

y = S2
ŷ (5.8)

Calculation of the covariance between the predicted scores and error scores
proceeds in much the same way. Re-express ei as yi− ŷi, then use the heuristic
rule. One obtains

Sŷ,e = Sŷ,y−ŷ

= Sŷ,y − S2
ŷ

= S2
ŷ − S2

ŷ (from Equation 5.8)
= 0 (5.9)

Predicted and error scores always have exactly zero covariance, and zero
correlation, in linear regression.

Using a similar approach, we may prove that

S2
y = S2

ŷ + S2
e (5.10)

5.2 MULTIVARIATE LINEAR REGRESSION

Multiple linear regression with a single criterion variable is a straightforward
generalization of linear regression. To make the notation simpler, assume that
the criterion variable Y and the p predictor variables Xj , j = 1, . . . , p are in
deviation score form.

Let y be an N×1 vector of criterion scores, and X be the N×p matrix with
the predictor variables in columns. Then the multiple regression prediction
equation is

y = ŷ + e

= Xb + e (5.11)

The least squares criterion remains essentially as before, i.e., minimize e′e
under choice of b. The unique solution is

b =
(
X′X

)−1
X′y (5.12)

The above notation generalizes immediately to situations where more than
one criterion is being predicted simultaneously. Specifically, let N × q matrix
Y contain q criterion variables, and let B be a p × q matrix of regression
weights. The least squares criterion is satisfied when the sum of squared
errors across all variables (i.e. Tr

(
E′E

)
) is minimized. The unique solution

is the obvious generalization of Equation 5.12, i.e.,

B =
(
X′X

)−1
X′Y (5.13)
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We will now prove some multivariate generalizations of the properties we
developed earlier for bivariate linear regression systems. First, we prove that
Ŷ = XB and E = Y − XB are uncorrelated. To do this, we examine the
covariance matrix between them, and prove that it is a null matrix. Recall
from page 73 that, when scores in Y and X are in deviation score form, that
Syx = 1/(N − 1)Y′X. Hence, (moving the N − 1 to the left of the formula
for simplicity),

(N − 1)Sŷ,e = Ŷ
′
E

= (XB)′ (Y − XB)
= B′X′ (Y − XB)
= B′X′Y − B′X′XB

= Y′X
(
X′X

)−1
X′Y − Y′X

(
X′X

)−1
X′X

(
X′X

)−1
X′Y

= Y′X
(
X′X

)−1
X′Y − Y′X

(
X′X

)−1
X′Y

= 0 (5.14)

The preceding result makes it easy to show that the variance-covariance
matrix of Y is the sum of the variance-covariance matrices for Ŷ and E.
Specifically,

Syy = 1/(N − 1)Y′Y

= 1/(N − 1)
(
Ŷ + E

)′ (
Ŷ + E

)
= 1/(N − 1)

(
Ŷ

′
+ E′

)(
Ŷ + E

)
= 1/(N − 1)Ŷ

′
Ŷ + E′Ŷ + Ŷ

′
E + E′E

= 1/(N − 1)Ŷ
′
Ŷ + 0 + 0 + E′E

= 1/(N − 1)Ŷ
′
Ŷ + E′E

= Sŷŷ + See (5.15)

Notice also that

See = Syy − B′SxxB (5.16)

Similar relationships hold when systems of random variables are related
in a least-squares multiple regression setup. Specifically, suppose there are p
criterion variables in the random vector η, and q predictor variables in the
random vector ξ. The prediction equation is

η = B′ξ + ε (5.17)
= η̂ + ε (5.18)
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In the population, the least-squares solution minimizes the average squared
error, i.e., Tr (E(εε′)). The solution for B is

B = Σ−1

ξξΣξη (5.19)

The covariance matrix between predicted and error variables is null, just as
in the sample case. The proof is structurally similar to its sample counterpart,
but we include it here to demonstrate several frequently used techniques in
the matrix algebra of expected values.

Ση̂ε = E (η̂ε′)

= E (
B′ξ(η − B′ξ)′

)
= E

(
ΣηξΣ−1

ξξξη′ − ΣηξΣ−1

ξξξξ′Σ−1

ξξΣηξ

)
= ΣηξΣ−1

ξξE(ξη′) − ΣηξΣ−1

ξξE(ξξ′)Σ−1

ξξΣηξ

= ΣηξΣ−1

ξξΣξη − ΣηξΣ−1

ξξΣξξΣ−1

ξξΣηξ

= ΣηξΣ−1

ξξΣξη − ΣηξΣ−1

ξξΣηξ

= 0 (5.20)

We also find that

Σηη = Ση̂η̂ + Σεε (5.21)

and

Σεε = Σηη − B′ΣξξB (5.22)

Now consider an individual random variable ηi in η. The correlation be-
tween ηi and its respective η̂i is called “the multiple correlation of ηi with ξ.”
Now, suppose that the variables in ξ were uncorrelated, and that they and
the variables in η have unit variances, so that Σξξ = I, an identity matrix,
and, as a consequence, B = Σξη . Then the correlation between a particular
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ηi and its respective η̂i is

rηi,η̂i
=

σηiη̂i√
σ2

ηi
σ2

η̂i

=
E (

ηi(b′
iξ)′

)
√

(1)(b′
iΣξξbi)

=
E (

ηiξ
′bi

)
√

(b′
iΣξξbi)

=
E (

ηiξ
′)bi√

(b′
iΣξξbi)

=
σηiξbi√
(b′

ibi)

=
b′

ibi√
(b′

ibi)
(5.23)

It follows immediately that, when the predictor variables in ξ are orthogonal
with unit variance, squared multiple correlations may be obtained directly as
a sum of squared, standardized regression weights.

In subsequent chapters, we will be concerned with two linear regression pre-
diction systems known (loosely) as “factor analysis models,” but referred to
more precisely as “common factor analysis” and “principal component anal-
ysis.” In each system, we will be attempting to reproduce an observed (or
“manifest”) set of p random variables in as (least squares) linear functions of
a smaller set of m hypothetical (or “latent”) random variables.

5.3 PARTIAL CORRELATION

In many situations, the correlation between two variables may be substantially
different from zero without implying any causal connection between them. A
classic example is the high positive correlation between number of fire engines
sent to a fire and the damage done by the fire. Clearly, sending fire engines
to a fire does not usually cause damage, and it is equally clear that one
would be ill-advised to recommend reducing the number of trucks sent to a
fire as a means of reducing damage. In situations like the example above, one
looks for (indeed often hypothesizes on theoretical grounds) a “third variable”
which is causally connected with the first two variables, and “explains” the
correlation between them. In the above example, such a third variable might
be “size of fire.” One would expect that, if size of fire were held constant,
there would be, if anything, a negative correlation between damage done by
a fire and the number of fire engines sent to the fire. One way of statistically
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holding the third variable “constant” is through partial correlation analysis.
In this analysis, we “partial out” the third variable from the first two by
linear regression, leaving two linear regression error, or residual variables. We
then compute the “partial correlation” between the first two variables as the
correlation between the two regression residuals. A basic notion connected
with partial correlation analysis is that, if, by partialling out one or more
variables, you cause the partial correlations among some (other) variables
to go to zero, then you have “explained” the correlations among the (latter)
variables as being “due to” the variables which were partialled out. If, in terms
of Equation 5.18 above, we “explain” the correlations in the variables in η by
the variables in ξ, then ε should have a correlation (and covariance) matrix
which is diagonal, i.e., the variables in η should be uncorrelated once we
“partial out” the variables in ξ by linear regression. Recalling Equation 5.22
we see that this implies that Σηη − B′ΣξξB is a diagonal matrix.

This seemingly simple result has some rather surprisingly powerful ramifi-
cations, once one drops certain restrictive mental sets. In the next chapter,
we see how, at the turn of the 20th century, it led Charles Spearman to a
revolutionary model for human intelligence, and an important new statistical
technique for testing the model with data. What was surprising about the
model was that it could be tested, even though the predictor variables (in ξ)
are never directly observed!

Problems

5.1 Suppose you have a system of variables y = Fx+e = ŷ+e, in which x
is a set of standardized, orthogonal predictors (i.e., their covariance matrix is
E(xx′) = I), F is a set of least squares regression weights for predicting y from
x, and the predictors in x are known to be orthogonal to the residuals in e.
Furthermore, assume that the residuals have a diagonal variance-covariance
matrix D.

5.1.1. Find a simple expression for the covariance matrix between y and
x.

5.1.2. Can you imagine two real-world situations where a system like the
one described in the above problem would occur? Remember that the fun-
damental features of the system are that the “signal” (x) is orthogonal to
the noise (e), and that the signal explains the correlations in the observed
variables (in the partial correlation sense).

5.2 Find an expression for the variance-covariance matrix of y in terms of
F and D. (Hint. Write y = Fx + e and compute Σyy = E(yy′).)


